Заказать звонок

Отправить заявку

Оформить заявку


Captcha
В начало страницы
Заказать обратный звонок Отправить заявку
Мой заказ – 0 Заказать обратный звонокОбратный звонок
In English YouTube канал Японские Измерительные Технологии +7 (495) 971-84-13
info@tmljp.ru



Как работают датчики деформации?

Как работают датчики деформации?

Как работают датчики деформации?

А эта конструкция надежна? Это было землетрясение? Будет ли этот самолет летать? Это лишь некоторые из вопросов, на которые вы можете ответить с помощью компактного устройства, называемого тензорезистором (иногда говорят «тензодатчик», но мы считаем, что это не корректно). Применение тензорезистора – это отличный способ измерить, насколько материал меняет форму, когда на него воздействует сила. Тензорезисторы варьируются от чрезвычайно простых до необычайно сложных, но все они очень полезны для ученых и инженеров. Давайте внимательнее рассмотрим, как они работают!

Тем не менее что же такое напряжение?

«Вы чувствуете напряжение? Напряги все силы! Не напрягайся!» В быту мы применяем эти понятия, закладывая в них иной смысл, нежели их принято применять в науке. Более того, это понятие оказалось настолько универсальным, что несколько разделов науки с удовольствием оперирует термином «напряжение». Оно может быть электрическим и измеряется в вольтах, а может быть механическим. Именно механическому напряжению посвящена данная статья.

Напряжение – это измерение того, какое внутреннее давление создается в материале, когда на него действует внешняя сила. Чем больше сила или меньше площадь, на которую она действует, тем больше вероятность того, что материал будет деформироваться (менять форму). Подобно давлению, мы измеряем напряжение путем деления силы, действующей на определенную область, на площадь этой определенной области, поэтому напряжение = сила / площадь.
Деформация - это то, что происходит в результате напряжения. Если материал подвергается воздействию силы, он часто меняет форму и становится немного длиннее (при растяжении) или короче (при сжатии). Деформация определяется как изменение длины (размера), вследствие воздействия силы, деленное на исходную длину (размер) материала. Поэтому, если вы потянете кусок резины длиной 10 см, и он растянется еще на 1 см и станет длиной 11 см, деформация составит 0,1.

Проверка прочности материала путем разрыва

Фото: этот лабораторный стенд предназначен для проверки прочности материала путем его разрыва. Тензометрические датчики, прикрепленные к материалу (в данном случае это алюминиевый цилиндрический образец), позволяют ученым изучать напряжения в материале и изменения при его деформации.





Напряжение материалов

Различные материалы ведут себя очень по-разному при одинаковом напряжении. Если вы натяните резиновый жгут, он соответственно растянется, перестанете тянут – жгут вернется к своей исходной длине. Когда материалы возвращаются к своей первоначальной форме и размеру после снятия усилия, мы говорим, что они претерпели упругую деформацию. Так ведут себя многие материалы, включая резину, некоторые пластмассы и многие металлы (которые, как вы, возможно, удивитесь, совершенно упруги при воздействии малых усилий). В конце концов, упругие материалы достигают точки, когда они не могут справиться с дополнительным напряжением и растягиваются постоянно. Такое изменение называется пластичной деформацией. Обратите внимание, что правильное значение пластика - это то, что сравнительно легко меняет форму. Вот почему пластмассы называют пластмассами: при изготовлении они легко формуются в разные формы.

Если вы инженер, то напряжения и деформации невероятно важны. При разработке чего-либо от автомобильного двигателя до моста, от ветряной мельницы до крыла самолета, вы знаете, что оно будет подвержено воздействию некоторых, порой довольно больших, сил. Могут ли материалы, которые вы планируете использовать, противостоять этим силам? Будут ли они незначительно упруго деформироваться и безопасно возвращаться к своей первоначальной форме и размеру? Будут ли они разрушаться после повторяющихся деформаций в следствие такого процесса, как, например, усталость металла (когда повторяющаяся деформация приводит к ослаблению металла и его внезапному разрыву). Вам нужно использовать что-то более упругое, чтобы обеспечить безопасность? А как это узнать? Вы можете сделать свои расчеты в лаборатории и попытаться выяснить это заранее. Вы даже можете создать сложные компьютерные/математические модели этого процесса. Тем не менее, только натурные испытания позволят вам проверить свои вычисления на предмет наличия ошибок, учесть ранее неучтенные факторы, применить не гипотетические образцы, а реальные вышедшие из реального производства. Надежный способ получить ответ о том, как материалы справляются с реальным напряжением - это использовать тензорезисторы, которые позволяют измерить даже самые незначительные изменения (за счет своей «аналоговости» они имеют практически бесконечную чувствительность).

Тензорезистором можно назвать датчик, который преобразует собственную деформацию в изменение собственных электрических характеристик, а поскольку его собственная деформация практически равна поверхностной деформации испытуемого материала, то можно сказать так: тензорезистор – это датчик, преобразующий поверхностную деформацию испытуемого материала в изменение собственных электрических характеристик. 

Тензометрическая колесная пара

Фото: Тензометрическая колесная пара для проведения натурных испытаний. Фото предоставлено одним из ведущих предприятий разработки и испытаний ж/д техники – ТИЦ ЖТ.





Однако путь к тензорезисторам был долог и сложен. Было предпринято множество способов измерения деформации, одни из которых применяются до сих пор. Рассмотрим это ниже.

Типы датчиков деформации

Существует пять основных типов датчиков деформации: механические, гидравлические, электрические, оптические и пьезоэлектрические. Давайте рассмотрим и сравним, как они работают.

Механические

Предположим, образовалась трещина в стене дома из-за проседания грунта и необходимо проверить, развивается ли эта трещина. Позвоним специалистам, и они, вероятно, приклеят кусок твердой плексигласовой пластмассы с линиями и шкалой прямо над трещиной, иногда называемый как трещинный монитор или пластинчатый маяк. При внимательном его рассмотрении вы обнаружите, что он фактически состоит из двух отдельных пластиковых слоев: один слой имеет линейчатую шкалу, а другой слой имеет стрелку или указатель. Вы приклеиваете один слой к одной стороне трещины и один слой к другой, чтобы, когда трещина открывалась, слои очень медленно скользили друг за другом, и вы могли видеть указатель, перемещающийся по шкале. В зависимости от того, как быстро развивается трещина, вы понимаете насколько быстро это проблему нужно решить!

Пластинчатый маяк

Фото: Пластинчатый маяк (изображение взято из интернет по следующему адресу: https://zishop.toist.ru/nabor/nabor-monitoring-treshin-lajt/)

Некоторые подобные механические датчики еще более грубые, чем этот. Просто прикрепляется кусок пластика или стекла через трещину и ожидаем, когда он разрушится при развитии трещины.

Существует огромное количество механических датчиков (экстензометров, прогибомеров, клинометров, сдвигомеров, тензометров и т.п.) Наиболее совершенным и распространённым механическим датчиком деформации является рычажный тензометр Гугенбергера. Подробно останавливаться на них не будем.

Рычажный тензометр Гугенбергера

Схема: рычажный тензометр Гугенбергера








Гидравлические

Одной из проблем с датчиками деформации является обнаружение очень малых деформаций. Например, вы можете представить себе ситуацию, когда здание медленно движется, но это движение настолько мало, что оно не проявляется, возможно, пока не появятся видимые признаки – трещины, провалы земли, видимые наклоны. Для простого датчика трещин, такого как описанные выше, требуется 1 мм движения здания, чтобы произвести 1 мм движения на поверхности датчика трещин. При этом достаточно тяжело определить точку, к которой нужно прикрепить такой тензометр. Но что, если мы хотим обнаружить наименьшие движения, которые не проявляются в масштабе? В этом случае нам действительно нужен датчик с рычагом, который усиливает деформацию, поэтому даже незначительное движение элемента вызывает очень большое и легко измеряемое движение указателя по шкале (как это было реализовано в рычажном тензометре Гугенбергера).

Эту проблему попытались решить с помощью гидравлических датчиков деформации.

Гидравлические датчики деформации по сути работают так же, как простые шприцы. Шприцы - это, по сути, гидравлические поршни, в которых небольшое движение жидкости в большом поршне (та часть, на которую вы нажимаете пальцем) вызывает гораздо большее движение жидкости в небольшом поршне, прикрепленном к нему (игла, из которой выходит жидкость). Легко предположить, как это можно использовать в датчике деформации: вы просто подключаете свой большой поршень к тому, что он производит, и используете меньший поршень в трубке меньшего размера, помеченной шкалой, чтобы узнать, сколько произошло движения. Относительный размер поршней определяет, насколько увеличено движение, которое вы пытаетесь обнаружить. Как правило, гидравлические датчики, подобные этому, умножают движение примерно в 10 раз и обычно используются в геологии.

Гидравлический датчик деформацииПростой пример гидравлического датчика деформации. Напряжение, которое вы хотите измерить, давит на зеленую кнопку (вверху слева). Это приводит в движение большой широкий поршень (желтый, 55) в гидравлический цилиндр (красный, 56), выталкивая захваченную жидкость (синего цвета, 57) через узкую трубу. Это гидравлический принцип в действии: малые движения зеленой кнопки и желтого поршня увеличиваются в гораздо большие движения за счет узости трубки. Жидкость течет в свернутую трубку Бурдона (оранжевая, 83), которая раскручивается в зависимости от давления внутри нее, натягивая рычажный механизм (темно-синий, 84, 85), изменяя перекрытие между двумя индукционными катушками так, что они отправляют электрический ток в цепь. Таким образом, сила нажатия на зеленую кнопку преобразуется в измеримый электрический сигнал (из патента США 2,600,453: способ и устройство для управления теплом в процессах горячей обработки. Автор RichardWeingart. 17 июня 1952 года).

Тензорезисторы (за счет изменения электрического сопротивления)

Если вы проектируете что-то вроде крыла самолета, как правило, вам нужно проводить гораздо более сложные измерения, чем позволяет простой механический датчик деформации, тем более что усилие имеет разное направление и огромную частоту. Возможно, вы захотите измерить напряжение во время взлета, например, когда двигатели производят максимальную тягу. Вы не можете прикрепить маленькие пластиковые тензодатчики к крылу и выходить, чтобы измерить их во время полета, но вы можете использовать тензорезисторы, чтобы сделать то же самое с помощью регистратора в салоне самолета.

Наиболее распространенные электрические датчики деформации - тензорезисторы - это тонкие прямоугольные полоски фольги с лабиринтными схемами разводки, которые ведут к паре электрических кабелей. Вы прикрепляете фольгу к материалу, который хотите измерить, и подключаете кабели к контрольной цепи. Когда материал, который вы испытываете, напряжен, фольга гнется, и проволока либо растягивается (так что становится немного тоньше), либо сжимается (поэтому становится чуть толще). Изменение толщины(площади сечения) металлической фольги/провода изменяет его электрическое сопротивление, потому что электронам труднее переносить электрический ток по более узким проводам. Таким образом, все, что вам нужно сделать, это измерить сопротивление (обычно используя мост Уитстона), и, с небольшим количеством соответствующего преобразования, вы можете рассчитать деформацию. Если задействованные силы невелики, деформация будет упругой, и тензодатчик в конечном итоге вернется к своей первоначальной форме, так что вы сможете продолжать проводить измерения в течение определенного периода времени, например, во время испытательного полета самолета-прототипа.

Подобные тензометрические датчики были изобретены в 1938 году профессором Массачусетского технологического института Артуром Руге (1905–2000 гг.) для помощи в обнаружении землетрясений.

Электрические датчики деформации

Фото: крупный план двух электрических датчиков деформации - тензорезисторов. На подложке из фольги хорошо видны узоры, похожие на лабиринты. Они изменяют форму, вызывая изменение сопротивления проводов, когда фольга изгибается под действием напряжения.

Тензорезистор Артура Руге

Рисунок: справа: иллюстрация оригинального тензорезистора Артура Руге из патента США, который он подал в сентябре 1939 года. Он состоит из проводящей металлической нити (желтого цвета), натянутой между парой гребнеобразных опор (синего цвета) и подключен к контактам (красный), которые могут быть подключены к цепи. По мере того как напряжение изменяется, нить деформируется, а ее сопротивление увеличивается или падает. Измерение сопротивления - это способ косвенного измерения напряжения. Датчик содержит вторую аналогичную нить (оранжевую), которую можно использовать для компенсации любых изменений сопротивления, вызванных исключительно изменениями температуры. Идея состоит в том, чтобы выбрать разные материалы для двух нитей, чтобы их температурные изменения не влияли друг на друга. Руге изготавливал свои нити из чувствительных к деформации сплавов, таких как Advance (медь-никель) и нихром (никель-хром). (Из патента США 2,350,972: тензорезистор, автор Arthur C. Ruge, 6 июня 1944 г.)

Тензорезисторы в настоящее время являются основой науки изучения деформаций. Большинство датчиков силы, веса, крутящего момента, давления, перемещения и ускорения (акселерометры) созданы на их основе.

Оптические датчики деформации

Некоторые материалы меняют свои оптические свойства (светопропускание или отражение), когда они напряжены и деформированы, например, стекло и пластик. Хотя стекло является удивительно полезным и универсальным материалом, оно хрупкое и потенциально очень опасно: если оно слишком сильно деформировано, оно может внезапно расколоться или разбиться. Это может быть реальной проблемой при использовании его в чём-то вроде лобового стекла автомобиля или иллюминаторов самолета. Один из способов обнаружения деформации в стекле - направить на него под углом поляризованный свет. Часть света будет отражена, а часть будет пропущена. Относительное количество проходящего и отраженного света будет меняться в зависимости от того, насколько сильно деформировано стекло. Измеряя количество отраженного света, мы можем точно измерить нагрузку на стекло.

метод измерения деформации в стеклеРисунок: Оптический тензодатчик, видимый сбоку (сверху) и сверху (снизу), работает аналогично устройству, называемому полярископом (или поляриметром). Он сделан из двух полых трубок (серый 1,2), расположенных под углом к стеклу (зеленый). Мощный источник (синий, 6) направляет сфокусированный луч (желтый) на стекло через поляризационный фильтр (красный, 8). В зависимости от того, является ли стекло деформированным, и насколько деформированным, свет отражается от поверхности стекла через второй фильтр (оранжевый, 9) и попадает на фотоэлемент (фиолетовый, 14). Он, в свою очередь, преобразует свет в электрический сигнал, заставляя стрелку в амперметре подниматься или опускаться (темно-синий, 15). Чем выше напряжение в стекле, тем больше света отражается и тем выше показания амперметра. (Из патента США 2119577: тензометрический датчик и метод измерения деформации в стекле, СэмюэльМакК. Грей, 7 июня 1938 года)

Вместе с тем, указанное выше решение не нашло широкого применения. Ему на смену пришел иной принцип использования света при изучении степени деформации.

Волоконно-оптические датчики деформации (ВОДД), ставшие развитием оптического типа датчиков деформации, обычно принадлежат к двум основным типам: ВОДД на решётках Брэгга и ВОДД на интерферометре Фабри-Перро. Вторые не получили широкого признания, но вот созданные на основе волоконной брэгговской решетка (ВБР), являются современным примером поиска замены ставшим классическими тензорезисторам сопротивления. Но стоимость такого решения всё ещё в разы дороже применения тензорезисторов, оно ограничено по частоте опроса/сбора данных и имеет ряд других особенностей.

Вопросу применения ВОДД на решётках Брэгга посвятим отдельный текст.

Пьезоэлектрические датчики деформации

Некоторые типы материалов, в том числе кристаллы кварца и различные типы керамики, являются эффективными «естественными» тензометрами. Если вы прикладываете к ним усилие, они создают крошечные электрические напряжения между их противоположными сторонами. Это явление называется пьезоэлектричеством и, вероятно, наиболее известно как способ генерирования сигнала хронометража в кварцевых часах. Измерьте напряжение с пьезоэлектрического датчика, и вы можете просто рассчитать деформацию. Пьезоэлектрические тензометрические датчики являются одними из наиболее чувствительных (примерно в 1000 раз больше, чем у более простых типов) и надежными и могут выдерживать годы многократного использования (вы иногда будете встречать их как«пьезоэлектрические преобразователи», потому что они преобразуют механическую энергию в электрическую).

Пьезоэлектрический тензодатчик

Изображение: Как работает пьезоэлектрический тензодатчик. Прикрепите его к тестируемому объекту, который может быть простым стальным бруском (серый, 1). Датчик представляет собой плоский кристалл (синий, 3), с двумя параллельными поверхностями, на которых закреплены электроды (красного и оранжевого цвета, 4 и 5), прикрепленные к контактам (желтый, 6 и 7), которые замыкаются на внешнюю цепь – систему сбора данных. Нижняя поверхность кристалла (красного цвета) очень прочно связана цементом (8) с тестируемым образцом. По мере того как образец деформируется, кристалл также деформируется, генерируя небольшое напряжение между его верхней и нижней гранями при изменении его формы. Чем больше напряжение, тем больше деформация, поэтому измерение электрического напряжения является очень точным способом измерения механического напряжения (из патента США 2,558,563: пьезоэлектрический тензодатчик, автор WilliamJanssen, GeneralElectric, 26 июня 1951 г.).

Существует большое количество других типов датчиков деформации: акустических, тепловых, электромагнитных, рентгеновских и т.д. Но они не нашли широкого применения и не оставили в заметный след в истории вопроса.

Тензорезисторы в настоящее время представляют собой наиболее распространённый тип датчиков деформации.

На нашем сайте вы можете купить (заказать) тензорезисторы от японской компании TML, одного из лидеров в производстве тензорезисторов в мире.

Материалы для данной статьи взяты из источника по адресу: https://www.explainthatstuff.com/straingauge.html[Woodford, Chris. (2009/2015) Strain gauges. Retrieved from https://www.explainthatstuff.com/straingauge.html. Last updated: February 27, 2019. Доступ 19.04.2019)] 


Сопутствующая продукция

Возврат к списку

  



Все материалы, представленные на сайте, в приложенных файлах и описаниях, носят информационный характер. Просим Вас руководствоваться только той информацией, которая указана в соответствующем договоре/соглашении/счете/техническом предложении, полученном от ООО "Японские измерительные технологии" по официальным каналам (электронный адрес info@tmljp.ru, либо иная форма отправления, позволяющая точно определить отправителя). Производитель оборудования компания Tokyo Measuring Instruments Laboratory Co., Ltd, официальный дистрибьютор ООО "Японские измерительные технологии" оставляют за собой право в любой момент изменять информацию, размещенную на сайтах. Для размещения заказа на интересующее оборудование просим Вас связаться с нами любым из удобных способов: оставив заявку на обратный звонок или позвонив нам, отправив заявку через сайт или по электронной почте, положив в "Корзину" интересующие Вас позиции и отправив заявку таким способом. Мы обязательно свяжемся с Вами. 

Товар

добавлен в корзину.